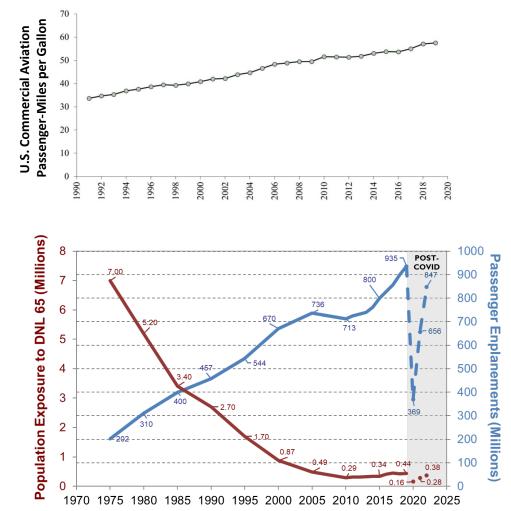
Policymaking in the U.S. to Support Innovative Aviation Technologies

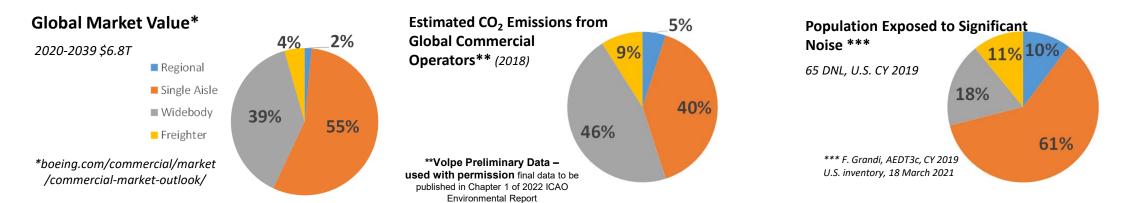

By: Dan Williams Office of Environment and Energy Federal Aviation Administration Date: 26 February 2024

United States 2021 Aviation Climate Action Plan

Rationale for Investing in Aircraft Technology

- Historically, advances in aircraft technology have been the main factor in reducing aviation's environmental impact
- Continued improvements come with large technological risk
- Small profit margins, competitive/cost pressures, and supply chain disruptions have considerably reduced industry's ability to undertake research to advance new technologies to reduce noise and emissions
 - However, industry has also set ambitious net zero targets
- SAF scale-up has challenges and cannot be the only solution
 - Technology improvements can make SAF go farther
- Government resources help mitigate technological risk and incentivize aviation manufacturers to invest in and develop cleaner, quieter technology

Sustainable Flight National Partnership


3

A sustained major technology development initiative, under which NASA and FAA will work with industry, to accelerate the maturation of aircraft and engine technologies that enable a step-change reduction in fuel burn, emissions, and noise (i.e., 25-30% lower fuel burn and 10-15 dB noise reduction relative to best-in-class aircraft).

• NASA Investments:

- Suite of integrated, large-scale aircraft and propulsion flight and ground technology demonstrations: ultra-efficient wings (such as transonic truss-braced wings), small-core gas turbines, electrified and hybrid electric aircraft propulsion system(s)
- New manufacturing techniques: high-rate composite manufacturing to enable rapid production of new aircraft
- FAA R&D:
 - Engine technologies, low-emissions combustion, airframe noise reduction, and aircraft technologies that enable future operational concepts
 - Technology development efforts will be executed primarily under the CLEEN Program, ASCENT and FAST-Tech

Initially target narrow-body aircraft family as it accounts for 55% of future global market value (\$3.7 trillion), 40% of CO₂ emissions from commercial operators globally, and 60% of domestic population exposure to significant noise.

Continuous Lower Energy, Emissions & Noise (CLEEN) Program

- FAA led public-private partnership with 1:1 cost matching from industry
- Reducing fuel burn, emissions and noise via aircraft and engine technologies and alternative jet fuels
- Conducting ground and/or flight test demonstrations to accelerate maturation of certifiable aircraft and engine technologies

	Phase I	Phase II	Phase III
Time Frame	2010-2015	2016-2020	2021-2026
FAA Budget	~\$125M	~\$100M	~\$125M
Noise Reduction Goal	25 dB cumulative noise reduction cumulative to Stage 5 and/or reduces community noise exposure (new goal for Phase III)		
Fuel Burn Goal	33% reduction	40% reduction	-20% re: CAEP/10 Std.
NO _x Emissions Reduction Goal	60% landing/take-off NO _x emissions (re: CAEP/6)	75% landing/take-off NO _x emissions (-70% re: CAEP/8)	
Particulate Matter Reduction Goal	-	-	Reduction relative to CAEP/11 Std.
Entry into Service	2018	2026	~2031

Enero

CLEEN Phase III Technologies

Engine Core

- GE: Compact Core Low Emissions Combustor
- o GE: Advanced Thermal Management
- GE: Hybrid Electric Integrated Generation
- Honeywell: Efficient Green High Pressure Core
- Honeywell: Compact High Work High Lift Low Pressure Turbine (LPT)
- Pratt & Whitney: TALON X+ Combustor
- Rolls-Royce Axi-Cf Compressor Technologies

<u>Airframe</u>

A MARRIERARD

- Boeing: Quiet Landing Gear
- Boeing: Quiet High-Lift System

0

Ο

Ο

0

Ο

Ο

 \bigcirc

Ο

 \mathbf{O}

Nacelle, Fan, and Bypass

GE: Open Fan

GE: Advanced Acoustics

America's Phenix: Erosion-Resistant Fan Blade Coating

Pratt & Whitney: Ultra-Quiet Reduced-Loss Fan Stage

Boeing: Advanced Nacelle Next Generation Inlet

Collins: Large Cell Exhaust Acoustic Technology

Collins: Titanium Inner Fixed Structure

Honeywell: Highly Efficient Fan Module

Safran: Acoustic Air Inlet Lip Skin

Aircraft Systems

GE: MESTANG III
Boeing: Intelligent

Operations

Sustainable Aviation Fuels

- Boeing: Higher Blend SAF
 Qualification
- GE: Higher Blend SAF Qualification

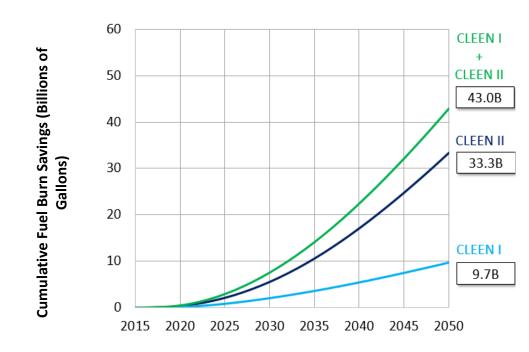
Fuel Emissions Noise

Assessment of CLEEN Technologies

Analytical Evaluation:

- Conducted by Georgia Tech through ASCENT Project 37
- Evaluating impact of technology applications through 2050
- Have completed modeling and assessment of CLEEN Phase I and II technologies and their fuel burn and NOx impacts

Fuel Burn Benefit:


- 43.0 billion gallons of fuel saved cumulative by 2050 from CLEEN Phase I and II
- CO₂ emissions reduced by over 400 million metric tons over this time period

NOx Benefit:

 CLEEN Phase I and II technology cumulatively reduce LTO NOx emissions by 2.79 Megatons through 2050

Noise Benefit:

 Updated noise benefits assessment including all CLEEN I and II technologies expected to be complete this Fall

Updated 11/30/2023

