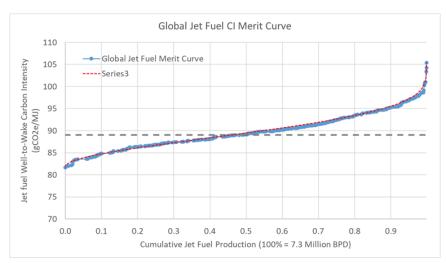

LCAF and SAF through VO co-processing


Quick win options for aviation decarbonization

Dr. Stephane MORIN ADNOC Refining - UAE

Jet Fuel CI reference level

Jet-Fuel Average CI: 89gCO2e/MJ

LCAF "Definition

14 CORSIA Sustainability criteria validated by ICAO in Nov. 2022

"CORSIA SUSTAINABILITY CRITERIA APPLICABLE FOR BATCHES OF CORSIA LCAF PRODUCED BY A CERTIFIED FUEL PRODUCER ON OR AFTER 1 JANUARY 2024"

Theme	Principle	Criteria
1. Greenhouse Gases (GHG)	LCAF should generate lower carbon emissions	Criterion 1.1: CORSIA LCAF will achieve net greenhouse gas emissions reductions of at least 10% compared to the baseline life cycle emissions values for aviation fuel on a life cycle basis.

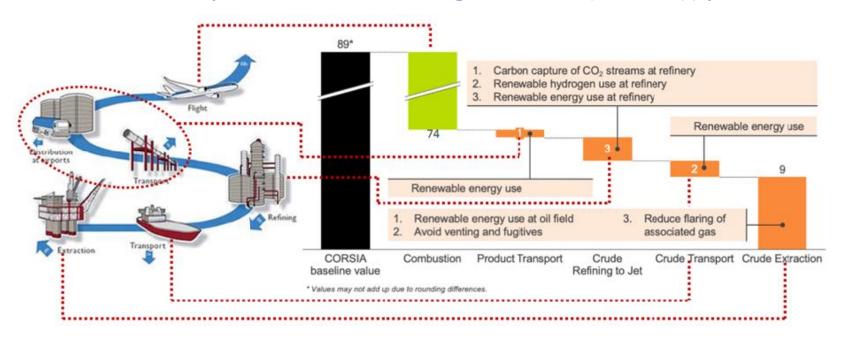
=> Eligibility criteria

Jet Fuel with a life cycle emission (Carbon intensity) CI < 80.1 gCO2e/MJ

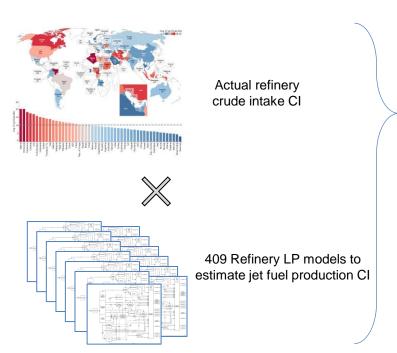
=> 10% reduction on Jet Fuel worldwide Average CI (89 gCO2e/MJ)

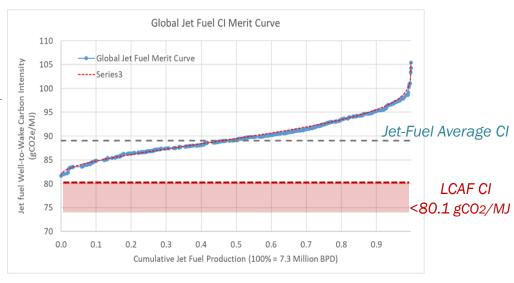
CORSIA : Carbon off-setting & reduction scheme for International Aviation

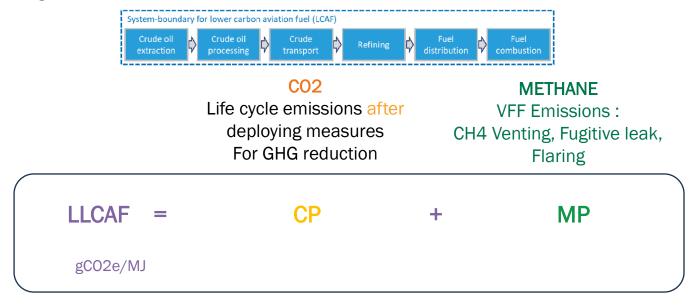
ICAO : International Civil Aviation Organization


... LCAF Sustainability criteria (#2-14)

THEME	PRINCIPLE: Production of CORSIA LCAF should
2. Carbon Stock	not be made from feedstock from land/aquatic systems with high biogenic carbon stock
3. Greenhouse gas Emissions Reduction Permanence	result in permanent emissions reductions
4. Water	maintain or enhance water quality and availability
5. Soil	maintain or enhance soil health
5. Air	minimize negative effects on air quality
. Conservation	maintain biodiversity, conservation value, and ecosystem services
. Waste and Chemicals	promote responsible management of waste and use of chemicals
Seismic and Vibrational Impacts	minimize seismic, acoustic, and vibrational impacts
. Human and labour rights	respect human and labour rights
1. Land use rights and land use	respect land rights including indigenous and/or customary rights
2. Water use rights	respect prior formal or customary water use rights
3. Local and social development	contribute to social and economic development in regions of poverty
14. Food security	promote food security in food insecure regions


Jet Fuel to LCAF - Mitigation strategies

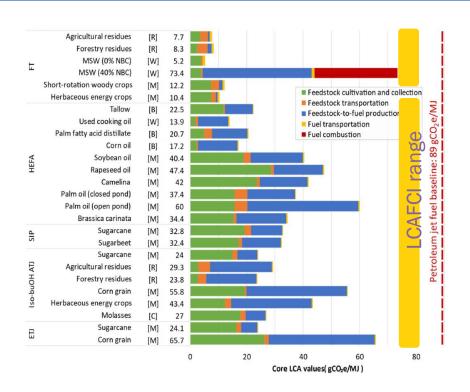

LCAF Carbon intensity is based on <u>carbon management</u> across jet fuel supply chain.


Jet Fuel CI reference level

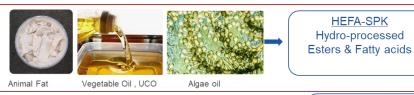
Life cycle emission – LCAF ELIGIBILITY

LCAF ELIGIBLE if LLCAF =< 80.1 gCO2e/MJ

On the way to LCAF


- UAE was the first country in the Middle East and North Africa region to announce a net zero strategic initiative by 2050 in line with requirements set out in the Paris Agreement
- ADNOC targets "Net zero" by 2045 and will decrease its GHG intensity by 25% by 2030.
 - ADNOC has allocated \$23 billion for landmark decarbonization projects, technologies, and lower-carbon solutions
 - Includes investments to grow domestic and international carbon management platforms, supporting the decarbonization journeys of both ADNOC and customers.
 - Already one of the least carbon-intensive energy producers in the world
- Actions that benefit ADNOC Jet-Fuel Carbon intensity reduction
 - Focus on Venting/Flaring/Fugitives minimization
 - 100% of ADNOC's grid electricity from Solar and Nuclear
 - Ongoing project to decarbonize off-shore operations using decarbonized electricity instead of gas turbine generators
 - Ambition to strongly expand capacity of our Carbon Capture, Utilization and Storage (CCUS)

On the way to LCAF


- Many oil producers/refiners are already engaged in Emission's reduction
- Technologies/practices are available
- Need: Certification scheme to be available Under preparation by ISCC
- Emission's reduction potential impact Replacement of 50% of Jet-Fuel by LCAF is equivalent to having 9% of SAF at 30 gCO2e/MJ ≅ 50 Millions MT CO2e/y

ILUC values not included

SAF production PATHWAYS

ATJ-SPK Fermentation Alcohol to Jet (ATJ)

Corn

Sugar cane

Agricultural/forestry waste

FT-SPK Gasification FT Isom-Cracking

Solar Energy

Direct air capture

Wind Energy

HEFA-SPK

SAF production unit or from 100% VO feedstock

Kerosene Hydrotreater Unit

VO co-processing

- Access to bio-feedstock (vegetable oil, UCO, animal fat)
- 2. Feedstock quality evaluation (contaminants, ...)
- 3. VO conversion testing at pilot plant scale (process conditions evaluation)

Parameter	Test method	Unit	VEGETABLE OIL 1	VEGETABLE OIL 2
Dansity O 453 O	ASTM D4052	lor (I	0.9178	
Density @ 15° C		kg/L		0.9236
ASTM Colour	ASTM D6045 ASTM D2622		2.3	1.7 2.2
Total Sulphur Total Nitrogen	ASTM D2622 ASTM D4629	mg/kg mg/kg	12	3
Bromine Number	ASTM D4629 ASTM D1159		41	68
Metals	ASTWIDITO9	mg/100g	41	08
Fe	ICP OES	nnm	2	1
Na	ICF OES	ppm	<1	171
) K	-		<1	1
Ca	-			
			<2	<2
Mg			<1	<1
Al			<1	<1
Zn			<1	<1
Si			<1	2
P			6	85
Sn			3	22
Total Chloride	XRF		6	-
Pour Point	ASTM D 5949	° C	+21	-
Total Acid Number	ASTM D 664	mgKOH/g	0.45	0.75
Water content	ASTM D 2709	%vol	No Free water	No Free water
Acid	AOCS Ca 5a-40	%	0.34	0.28
Insoluble Impurities	AOCS Ca 3-46	%	0.05	0.21
Unsaponifiable matter	AOCS Ca 6a-40	%	0.25	0.43

VO co-processing

- 1. Access to bio-feedstock (vegetable oil, UCO, animal fat)
- 2. Feedstock quality evaluation (contaminants, ...)
- 3. VO conversion testing at pilot plant scale (process conditions evaluation)

VO co-processing

- 4. Product Quality Certification
- 5. Sustainability Certification
- 6. Transport of VO
- 7. Refinery processing
- 8. Marketing

....

TABLE A1.1 Extended Requirements of Aviation Turbine Fuels Containing Co-hydroprocessed Esters and Fatty Acids or Fischer-Tropsch Hydrocarbons A. B.

		nopsch nydrocarbon	15		
Property		Jet A or Jet A-1	Test Methods ^C Referee Alternative		
THERMAL STABILITY ^{D, E} (2.5 h at control temperature of 280 °C min) Filter pressure drop, mm Hg	max	25	D3241/IP 323	PAICH FIGURE	
Tube rating: One of the following requirements shall be met^F					
(f) Annex A1 VTR, VTR Color Code	Less than	3 No peacock or abnormal color deposits			
(2) Annex A2 ITR or Annex 3 ETR, nm average over area of 2.5 mm ²	max	85			
Viscosity 40 °C mm²/s ^a	max	12.0	D445/IP 71, Section 1 ^H	D7945	
Freezing point °C		Table 1 freezing point limits apply	D5972/IP 435	D7163/IP 529 or D7154/IP 52	
Unconverted esters and fatty acids, mg/kg'	max	15	D7797/IP 583 ^{1,2}		

Certificate

according to the

Renewable Energy Directive (RED II)

(Directive (EU) 2018/2001 on the promotion of the use of energy from renewable sources (recast))

Certificate Number: EU-ISCC-Cert-IT206-2053

RINA Services S.p.A. Via Corsica, 12 16128 Genova ITALY

certifies that

Abu Dhabi Oil Refining Company (TAKREER) - TA ADNOC REFINING

Al Rubban Street, Al Ruwais Industrial City 971 Abu Dhabi UNITED ARAB EMIRATES

complies with the requirements of the certification system

(International Sustainability and Carbon Certification)

and the requirements of the RED II.

Place of the audit (if different from the legal address of the system user as stated above; only applicable for traders and traders with storage):

This certificate is valid from 08.08.2023 to 07.08.2024

The site of the system user is certified as: Co-Processing plant

Certificate

according to the

Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA)

As developed by the International Civil Aviation Organization (ICAO)

Certificate Number: ISCC-CORSIA-PLUS-Cert-IT206-22

RINA Services S.p.A. Via Corsica, 12 16128 Genova ITALY

certifies that

Abu Dhabi Oil Refining Company (TAKREER) - TA ADNOC REFINING

Al Rubban Street, Al Ruwais Industrial City 971 ABU DHABI UNITED ARAB EMIRATES

complies with the requirements of CORSIA and the certification system

ISCC-CORSIA PLUS

(International Sustainability and Carbon Certification)
which is approved by the ICAO Council.

This certificate is valid from 08.08.2023 to 07.08.2024

The site of the system user is certified as Co-Processing plant

Conclusion

- The FUEL is a key player on the way to a more SUSTAINABLE Aviation industry
- Any Emission Reduction is welcome
- LCAF & SAF from VO co-processing are good options for supporting Aviation industry decarbonization with a short timing

Thank you for your attention!